A modular framework for gene set analysis integrating multilevel omics data
نویسندگان
چکیده
Modern high-throughput methods allow the investigation of biological functions across multiple 'omics' levels. Levels include mRNA and protein expression profiling as well as additional knowledge on, for example, DNA methylation and microRNA regulation. The reason for this interest in multi-omics is that actual cellular responses to different conditions are best explained mechanistically when taking all omics levels into account. To map gene products to their biological functions, public ontologies like Gene Ontology are commonly used. Many methods have been developed to identify terms in an ontology, overrepresented within a set of genes. However, these methods are not able to appropriately deal with any combination of several data types. Here, we propose a new method to analyse integrated data across multiple omics-levels to simultaneously assess their biological meaning. We developed a model-based Bayesian method for inferring interpretable term probabilities in a modular framework. Our Multi-level ONtology Analysis (MONA) algorithm performed significantly better than conventional analyses of individual levels and yields best results even for sophisticated models including mRNA fine-tuning by microRNAs. The MONA framework is flexible enough to allow for different underlying regulatory motifs or ontologies. It is ready-to-use for applied researchers and is available as a standalone application from http://icb.helmholtz-muenchen.de/mona.
منابع مشابه
A Direct Power Feeding System for AC Railway Networks Using Modular Multilevel Converter
Abstract Traditional railway power supply systems impose substantial power quality problems (PQ) on the utility network, such as unbalance, harmonics and a large amount of reactive power. This paper proposes a topology based on three-phase to single-phase modular multilevel converters (MMC) to obviate these problems. The MMC based traction substations (TSS) are connected directly to the utili...
متن کاملRAMONA: a Web application for gene set analysis on multilevel omics data
SUMMARY Decreasing costs of modern high-throughput experiments allow for the simultaneous analysis of altered gene activity on various molecular levels. However, these multi-omics approaches lead to a large amount of data, which is hard to interpret for a non-bioinformatician. Here, we present the remotely accessible multilevel ontology analysis (RAMONA). It offers an easy-to-use interface for ...
متن کاملKnowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction
OBJECTIVE Cancer can involve gene dysregulation via multiple mechanisms, so no single level of genomic data fully elucidates tumor behavior due to the presence of numerous genomic variations within or between levels in a biological system. We have previously proposed a graph-based integration approach that combines multi-omics data including copy number alteration, methylation, miRNA, and gene ...
متن کاملIntegrated analysis of microarray data and gene function information.
Microarray data should be interpreted in the context of existing biological knowledge. Here we present integrated analysis of microarray data and gene function classification data using homogeneity analysis. Homogeneity analysis is a graphical multivariate statistical method for analyzing categorical data. It converts categorical data into graphical display. By simultaneously quantifying the mi...
متن کاملA Systemic Analysis of Transcriptomic and Epigenomic Data To Reveal Regulation Patterns for Complex Disease
Integrating diverse genomics data can provide a global view of the complex biological processes related to the human complex diseases. Although substantial efforts have been made to integrate different omics data, there are at least three challenges for multi-omics integration methods: (i) How to simultaneously consider the effects of various genomic factors, since these factors jointly influen...
متن کامل